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Overview

» Matter vs Antimatter

B, Oscillations

* Tools / Experimental Apparatus
» Data Analysis

* Interpreting the Data
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Initial History of Antimatter

* 1928 Dirac predicts the positron (anti-electron)
* Antiparticles have same

properties as particles,
but opposite charge

* 1933 positron found
by Carl Anderson




More History of Antimatter

1955 anti-proton ! Serge, Chamberlain, et al.
1960 anti-neutron ! Cork, Piccione, et al.

1965 anti-deuteron found by two teams:
— Leon Lederman et al. at BNL
— Zichichi et al. at CERN

anti-particles of most particles are found by
now

1995 anti-atoms produced at CERN



Symmetries in Particle Physics
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Sakharov's Conditions

* Why Is there more matter than anti-matter
in the universe (baryon asymmetry)?

—Baryon number must be violated
—C and CP symmetries must be violated

—Above violations take place while
universe is out of thermal equilibrium



Weak Interaction Processes

Broken Symmetries

P: asymmetric § ray spectrum in polarized Co®°

— 1957 C.S. Wu et al.

C: asymmetry of u* and u- polarization in nis decay
— 1957 R.L. Garwin, L.M. Lederman, M. Weinreich

— 1957 J. Friedman, V. Telegdi

CP: in the neutral kaon system (Kg, K, decays)
— 1964 J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay

CP: direct CP violation in neutral kaon system
— 1999 KTeV collaboration

T: rate difference for KO ! KO as function of time
— CPLEAR and KTeV collaborations

CP: in the neutral B meson system (B°J/hpKs) decays
— 2000 BaBar and Belle collaborations



Matter — Antimatter Oscillations

Meson: quark-antiquark bound state

certain mesons can “swap” matter for
antimatter quark without violating
conservation laws

this is the effect that we want

to observe
Matter-Antimatter oscillations Pion (rt*)
established in Kaons, B® mesons..



B Mesons
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How can a B, meson oscillate?

VAR

we need a process that canturnb!s
(and vice versa)



Weak Interactions

* weak interactions can change quark flavor!
« mediated by the WS boson, example: n decay

& ag
v
o=

transition inside quark family



W3 Couplings to Quarks
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How a B, meson oscillates
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A Classical Analogy
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The B, Meson Also Decays!

» b quark “lives” long a
T, = 1.5 pS 50

Ct, = 450 um =
0.45 mm 0

 one lifetime () is the
point at which the

parent sample is down
by 1/e.

- important for mixing 10

start with 100 mesons at {=0

N(t) = N exp(-t/T)
No/e 37 mesons at t=1
NO/e = 14 mesons at t=21

time (lifetimes)
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Use B, decay time as stopwatch!

start with sample of pure B, matter mesons

Decay as matter
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“Right Sign”

cg(’f)

“Wrong Sign”

Asymmetry — a useful quantity
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Realistic Detector Effects

flavor tagging power, displacement momentum
background resolution resolution
—1.5¢ = 1.5¢ —1.5¢
< 1-02— mis-tag rate 40% < 1-02— o(L) ~ 50 um < 1-02— o(p)/p = 5%
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All Effects Together

Mixing Asymmetry
A(t) = cos(Amt)

LAY

Decay Time [ps]

1.5

<

—>

1.0[

1.0[
0.5)

0.0:\ N N N e e

0.5

1.5

A A S S e

0

Decay Time [ps]

This is why previous measurements have not
been able to observe B, mixing!




Layout of the search for oscillations

 produce lots of B, meson decays

* reconstruct B, meson decays

» was B, produced as matter or antimatter ?
» did B, decay as matter or antimatter ?

* measure B, meson decay time

* ook for oscillation pattern!

¢ let’'s see what tools we have available...



Tevatron Collider
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Production of b quarks
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“flavor excitation” “gluon splitting”
* b quarks are produced in quark- antiquark pairs!

(this is useful for figuring out the production flavor)




From b quarks to B, mesons

* bare b quarks don’t exist, but form mesons

b

C
C

signature: a K* is likely to be found near a B, !
(this is another way to tell the production flavor)
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Multi-Purpose Detectors

Tracking Electromagnetic Hadron Muon
chamber calorimeter calorimeter chamber
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CDF Detector

Muon Detectors

‘.J—‘
g\

~ Endplug
Calorimet

7



CDF Detector Rolling




Tracking system

 immersed in 1.4 T solenoidal magnetic field

» charged particles follow helical trajectories
Drift Chamber (r~1.4 m) Silicon Tracker
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A B, Meson Decay
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Reconstructing B, Decay Signals

CDF Run Il Preliminary

Lx~1fb"

B, signal
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B, Meson Decay Time
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Decay Time Resolution

Mixing Asymmetry
A(t) = cos(Am.t) Avg resolution ~% period at
Amg =18 psT
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Was the B, Produced as Matter?

e,u vertexing (same) side

s n
i fragmentation
K : K
D meson ~
T +
K

b hadron\s N

P.V. | Bli S~ K™

“‘opposite” side

event, if it was matter, the B, was antimatter!
» “same side”. fragmentation remnants



Ingredients for oscillation search

v produce lots of B, meson decays
v  reconstruct B, meson decays
v"was B, produced as matter or antimatter ?
« flavor tagging techniques
v" did B, decay as matter or antimatter ?
* decay remnants tell us the decay flavor
v"measure B, meson decay time

« we have all the necessary ingredients
 look for oscillation pattern!



A Working Example: B? Oscillations

« The BY meson oscillates with Am % 0.5 ps™’

CDF Run Il Preliminary L~ 245 pb"
B-I"D,D - Kt

S
L.

Asymmetry
=

=== [it function

S
N

| Total B fraction

== Total B* fraction

0 Ut Proper de'cay length [cmf
» Search for mixing ! tool that scans frequencies




Fourier Transform of Asymmetry
Tmaaz
A(Am) = /O A(t) cos(Am - £)dt

» Useful properties:
A(Am) Y2 O if no mixing at Am
A(Am) Y2 1 if mixing at Am
“calibrated for detector effects”



Amplitude "Scanning”
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Amplitude Scan: B° Mixing

o -1
CDF Run Il Preliminary L = 355 pb
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Amplitude Scan:
B, Mixing, 2006 World Average
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Amplitude Scan:
DO B, Mixing Search, March 2006
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Amplitude Scan:
CDF B, Mixing Search, April 2006
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Systematic Uncertainties & Result

» fit finds the oscillation frequency (Am,)
most probable to match our data signature

CDF Run Il Preliminary 1fb”

-l - —— hadronic
(@) i — semileptonic
— — combined

 systematic uncertainties <"
— due to uncertainties of h

tracker geometry, alignm
—roughly § 0.5%

Am, = 17317053 (stat) £ 0.07(syst)ps "



Standard Model Prediction

* analogous diagram Y
o \ b . U,vC,'[ id . d
for B mixing

W W
Amg m(BS) 2’%3‘2

Amy m(BO)€ Vial? WJ VthU‘ET'thV:KB/

 global fit for W-quark coupling constants:
Ams: 18.3 52 ps’
* OUr measurement agrees:

Am, = 17.317095(stat) £ 0.07(syst)ps ™




How would New Physics influence
the B, oscillation frequency?

New Particles
A
b : Pro Se S

g
\§j_.___iﬂ ______ bs__ @
(833)RR

* new particles in the loop change frequency
* new physics has evaded detection yet again!

Qe




A History of B Meson
Oscillations (so far)

1987 UA1 evidence for BY and B, mixing
1987 ARGUS observation of B® mixing

(various detectors) improved measurements
of BY mixing frequency (A m,)

2002: BaBar and Belle measure A my at ~1%
Tevatron “one-two punch” at B, mixing:

— March 2006: DO sees hints of B, oscillation
— April 2006: CDF measures B, oscillation frequency



The Future of B, Oscillations

 the probability of a “fake” signal from the
Tevatron experiments is still p ~ 103

» the book is not closed until p <107 (“50”)
» both detectors are taking more data

» also working on analysis improvements

- stay tuned for the exciting developments!

- CP violation is next:
— is matter preferred over antimatter in B,?
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Why can the B, meson mix?

u,c,t Vis W Vis
b > > - S b > \N\N\/\N g
\N+§ gvv ul C: 8| ‘37 C__
§——t—————b __, '
VtS u, C, t th=1 VtS \“V+ th=

* simultaneous flavor change b!' s, sl b —
* mediated by W bosons
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Real Measurement Layout
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Likelihood Profile
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Probability of a “fake” signal

« compare to distribution of Alog(L) for sample
with randomized matter/antimatter tags
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o probability of “random tag” conspiracy: 0.5%



